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6.1 WHAT YOU NEED TO GET STARTED
The main objective of this chapter is to gain the required practical knowledge and

skills for building simple physical testbeds for the WoT, which integrates the real

world into the digital world. Concrete steps for building a WoT testbed are presented

in the form of four experiments and a mini-project. Testbed evaluation is out of the

scope of this chapter; our work elsewhere [1] discusses evaluation of an integrated

WoT testbed. This chapter focuses on the interaction between microcontrollers, sen-

sors, actuators, and PCs using HTTP and Zigbee protocols. The required platforms

and devices for running examples in this chapter are as follows:

• Platforms: C#, ASP.net, and Arduino programming language.

• Devices: Examples in this chapter are for WoT-based smart home applications and

will use the components listed in Table 6.1.

6.2 INTRODUCTION
Augmenting everyday’s objects (e.g., light bulbs, curtains, and appliances) with em-

bedded computers or visual markers (e.g., LEDs and small LCD displays) allows

things and information about them to be digitally accessible through the Web or

mobile phones [1,2]. They become the Internet’s interface to the physical world by

converging the physical world into digital world [3,4]. With a partial lack of efficient

and scalable communication standards, the number of devices connected to the In-

ternet will increase rapidly as soon as IP becomes the core standard in the field of

embedded devices. It is expected to reach the order of billions in 2020 [5]. The IoT
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Table 6.1 Smart Building Components

Component Count Description

Arduino 2 Microcontroller of type (Uno-R3 or Mega2560)

XBee Series 2 R3 Pro 3 For building a WSN using Zigbee

protocol

XBee Shield 2 For installing XBee modules on Arduinos

XBee PC Shield 1 For joining PC to the network

DHT11/LM35 2 Humidity and Temperature sensors

Light Dependent

Resistor (LDR)

2 LDR is sometimes called a Photoresistor or a

Photocell. It is used for sensing brightness or

darkness level in a certain place (e.g., room).

LEDs (2 × RGB, 2 ×

Blue)

4 RGB LED is a triple-light led (red, green and

blue). It is used for representing power

consumption levels, room state, and so on. For

example, it becomes red to represent hot state.

Fan 2 Fan device should consume at most 5.0 voltages.

Resistors (6 × 150 Ä,

2 × 10 kÄ)

8 For adjusting voltage or current to other devices

(i.e., for adjusting sensitivity of sensors (e.g.,

LDR)).

Bread board 2 Connection board.

Additional accessories: jumper wires for connecting components and USB programming cables for program-

ming microcontrollers (Arduinos).

and the WoT address this challenge by using IP and IPv6 (6LoWPAN) for embedded

devices [6].

From the Wireless Sensor Network (WSN) to the IoT and moving forward to the

WoT, this trend has spread for the last two decades [7]. Haller [8] discusses main

concepts about the IoT (e.g., SThs and EoIs). The IoT focuses on the infrastructure

layer for connecting and controlling SThs through the Internet, whereas the WoT is

the application layer that visualizes IoT data (sensory data) using standard web tools

(e.g., HTTP) and services such as Representational State Transfer services (REST)

and RESTful APIs [9]. The HTTP protocol is used in the WoT as an application

protocol [10]. Some efforts have been done on HTTP libraries to be compatible with

embedded devices’ capabilities, so that data and services become accessible using

web standards [7]. Due to web 2.0, users can get static as well as dynamic information

about resources.

Using a single protocol in the WoT will not satisfy all communication needs

between heterogeneous things, and HTML has to embed additional formats for repre-

senting SThs and EoIs’ properties and states [11]. As a result, the WoT needs special

search engines like Dyser [3] and WoTSF [12].

Muhammad et al. [13] summarize differences between the concepts of emulators,

simulators, and physical testbeds. They conclude that physical testbeds provide more

accurate results. Thus, building a real WoT testbed that simulates the desired set of

conditions and events in certain environments produces more accurate results [2].
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This chapter addresses the problem of designing and implementing testbeds for WoT

research and course projects. Practical knowledge about building the WoT testbeds

starts with configuring and connecting components at the IoT layer (i.e., building

the WSN layer). Building the WoT follows the architecture discussed in [7]. Mini-

projects in this chapter cover general services of the testbed, such as (1) getting

real-time data from SThs, (2) monitoring SThs and EoIs using standard web tools

and services, and getting and saving datasets. The WoT testbed can act as a simulator

for the physical environment by attaching datasets to the application layer to run in

offline mode like the integrated testbed environment presented in [1].

The rest of this chapter is organized as follows. The next section discusses the

WoT features and challenges. Section 6.4 briefly surveys IoT and WoT testbeds.

Section 6.5 discusses the hardware and software components of a WoT testbed. Sec-

tion 6.6 presents concrete steps for building mini-projects and course modules, which

are combined after that in Section 6.7 to build a physical testbed for the WoT. Sec-

tion 6.8 summarizes the chapter.

6.3 WOT FEATURES AND CHALLENGES
Sensors can provide great benefits when their readings and states are presented in a

meaningful and friendly way to users and machines. For example, users need to know

the logical path representing physical location (e.g., Building X, Floor Y, Room Z)

instead of sensors’ longitude and latitude. The potential of the WoT lies in inter-

connecting and integrating services with human users in different WoT networks.

Searching for SThs and EoIs is one of the most important services in the WoT, where

users search in real-time inWoT datasets that are collected in different formats [3,12].

This service needs special search engines due to dynamic nature of SThs readings and

EoIs states.

Due to the great interest in converting things into SThs, more challenges have

been found in the WoT [14–16]. Challenges are classified in brief as follows. Firstly,

some challenges are concomitant to the IoT; these are: (1) huge number and hetero-

geneity of connected devices; (2) no standardized naming for SThs’ attributes (during

registration process); (3) dynamic states (e.g., readings) and dynamic attributes (e.g.,

locations for movable objects on which sensors and actuators are attached); and (4)

logical path not considered as a SThs’s attribute. Secondly, other challenges are con-

comitant to the WoT; these are: (1) partially non-crawlable WoT pages; as most WoT

pages host dynamic parts (e.g., coded using AJAX) for monitoring SThs and EoIs in

real-time, most of search engines’ spiders cannot crawl them and (2) none standard-

ized naming for states; a single STh state is represented using different wordings that

has the same semantic meaning.

Incorporating a sense of WoT challenges and features (e.g., dynamic information)

in datasets generated by WoT testbeds allows for producing more accurate results. In

the light of the challenges and dataset requirements (e.g., lack of information about

the infrastructure layer) discussed in [2], we summarize our observations on dataset
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contents. If the research is only interested in SThs values or in EoIs states, the used

dataset is based on the WoT level (dynamic information), whereas if the research is

interested in the network infrastructure, the used dataset is based on the IoT level

(static information). Because the SThs may be movable objects (i.e., their locations

may be changing frequently), then the research may need an additional type of infor-

mation, which is called quasi-dynamic information about SThs. In this case, such a

property about SThs will be considered as a special type of their readings (dynamic

information). An integrated dataset contains information about both sensor readings

and network infrastructure, that is, it is based on both IoT and WoT levels.

6.4 A BRIEF SURVEY OF IOT AND WOT TESTBEDS
Several studies [13,17–19] discuss and compare between existing simulators and

testbeds using general criteria, such as the number of nodes, heterogeneity of hard-

ware, and portability, but none of them discusses WoT features, such as STh’s logical

path, supported formats in which EoIs’ states are presented, and accuracy of the

datasets generated by the testbeds.

In the following sub-sections, we briefly survey testbeds and measurement plat-

forms that combine both IoT and WoT features.

6.4.1 IOT SIMULATION

There is no general way for simulating the IoT [13,18,19]. Moreover, there are situ-

ations in which simulators and real datasets containing raw information (e.g., sensor

readings [20]) (less information about the IoT layer are present) are not enough for

modeling an environment under testing. When datasets miss the sense of one or

more of the WoT features or challenges (discussed above) [2], they miss main factors

for accurate WoT evaluation [1]. Also, many datasets are not actually related to the

problem under investigation, but were generated for testing and evaluating different

algorithms or methods in other research efforts. For instance, an evaluation of WSNs’

simulators according to a different set of criteria, such as the Graphical User Inter-

face (GUI) support, the simulator platform, and the available models and protocols,

concludes that there is no general way for simulating WSNs, and hence IoT and WoT

[18,19]. None of these criteria addresses the previous challenges. So, it is desirable to

embed the unique IoT andWoT challenges within the datasets and to make simulators

address as much of these challenges as needed.

6.4.1.1 WSN Simulators

Several studies [13,18,19] summarize the differences between existing WSN simu-

lators according to a set of criteria, such as heterogeneity, scale, user involvement,

limitations, etc. The Cooja simulator gives users the ability to simulate WSNs easily

using a supporting GUI [18,19] and different types of sensors (motes) for different

sensor targets. For instance, sensor applications are written in the nesC [21] language
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then built in the TinyOS environment [22] (e.g., the RESTful client server applica-

tion [23]). However, there are limitations and difficulties for testing the extensible

discovery service [24] and sensor similarity search [25] in Cooja, because there is

no information about the network infrastructure and entities. In particular, static in-

formation about sensors and schematics information about buildings and locations of

sensors need to be presented.

6.4.1.2 WSN Physical Testbeds

Physical testbeds produce accurate research results [13]. Different testbeds are found

in this field due to different technologies and network scales. MoteLab [26] sup-

ports two ways for accessing the WSNs, (1) by retrieving stored information from a

database server (i.e., offline) and (2) by direct access to the physical nodes deployed

in the environment under test (i.e., online). However, the WoT challenges mentioned

previously are not fully supported in MoteLab. User access in MoteLab is similar to

what is done in the WoT testbed in [2].

SmartCampus [27] tackles gaps of experimentation realism, supporting hetero-

geneity (of devices), and user involvement [17] in IoT testbeds. CookiLab [28] gives

users (researchers) the ability to access real sensors deployed in Harvard University.

However, it does not support logical paths as a property for sensor nodes and entities

(WoT features).

Nam et al. [29] present an Arduino [30] based smart gateway architecture for

building IoT testbeds, which is similar to the architecture of the testbed environment

proposed in [1] and [2] (e.g., they all use periodic sensor reporting). They build an

application that discovers all connected Arduinos and lists the devices connected on

each Arduino. However, the framework does not cover all scenarios that WoT needs,

especially for searching. For example, information of logical paths and properties of

devices and entities are missing in the framework.

6.4.2 WOT SIMULATION

Using websites (e.g., [31–33]), a WoT environment can be built online by attaching

SThs like Arduinos [30]. These websites monitor the states of devices and provide

RESTful services (GET, PUT, UPDATE, DELETE) [9] for uploading and access-

ing reading feeds. Moreover, the values (sensor readings) are visualized for users.

The services of the aforementioned websites are similar to services of the testbed

environment in [2]. However, these websites are limited by available service usage

and formats of the responses, which are hardcoded and embedded within the website

code or at least not exposed to users. The testbed architecture in [1], which is built

specially for testing WoT, provides more general services, such as monitoring live in-

formation fed from attached SThs, visualizing sensor readings and states of EoIs over

time, controlling actuators, triggering action events, and periodic sensor reporting.

A comparison of state-of-the-art IoT and WoT Testbeds has been discussed in our

previous work [1] along two main axes: (1) the infrastructure layer elements (e.g.,

device heterogeneity), and (2) the application-layer elements (e.g., reusability).
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FIGURE 6.1

Hardware components for building IoT node: (a) XBee module of type pro S2B; (b) XBee
shield; (c) Ethernet shield; and (d) Arduino board.

6.5 HARDWARE AND SOFTWARE COMPONENTS OF A WOT
TESTBED

Because theWoT is foreseen as the future application of the IoT [11,23], theWoTwill

be built in two axes; the first axis (IoT layer) is to build the IoT layer by establishing a

connection between all things (nodes) after converting them to SThs, and the second

axis is to build a web application on top of the IoT layer to monitor and control SThs

and EoIs that represent the set of required environmental events (WoT layer).

Building the IoT layer needs sensors, such as temperature sensor (e.g., LM35),

actuators (e.g., RGB-LED), and microcontrollers, such as Arduino, Netduino, and

Raspberry-Pi boards, to be connected or attached to things and objects using bread-

boards. Microcontrollers act as gateways in the IoT. Building the IoT is done by

implementing a certain network topology that covers the required environment. The

main hardware components are Arduino, Ethernet shield and XBee module; these

components are presented in the next three sub-sections followed by a brief descrip-

tion of Digi’s configuration software (X-CTU [34,35]).

6.5.1 ARDUINO

Arduino [30], shown in Fig. 6.1(d), is the simplest type of microcontrollers, whereby

its hardware and software components are open-sourced [30]. Arduino programming

language is based on C++ programming language in the Arduino IDE. Arduino is

considered as a tiny computer that can be programmed to perform a task, control

the functionality of other components that are connected on its board (e.g., LM35

and LDR), and to process data according to program instructions. Arduino family
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FIGURE 6.2

Two Arduinos connect wirelessly using XBee modules, which implement Zigbee protocol.

has different versions; the most famous one is of type UNO. The ATmega328 is main

component of the Arduino, where it acts as a processor; it has 32KB of flash memory.

The Arduino can operate either independently (e.g., robot), connected to a com-

puter (i.e., act as base-station), connected to other Arduinos (e.g., local area network

between Arduinos, such as shown in Fig. 6.2), or connected to other controller chips.

In other words, Arduino connects to the physical world through electronic sensors

and actuators providing information about environmental events that sensors repre-

sent in the surrounding environment. It can use an Ethernet shield or Wi-Fi shield, so

that it can act as a web server for sending and receiving data. Therefore. they can be

used to represent things’ states in real-time.

Arduino and Raspberry-Pi boards’ families are of the most famous IoT boards for

building IoT applications. Raspberry-Pi is like the Arduino, but it has more power-

ful features and capabilities; for example, it has bigger internal memory and can be

programmed using different programming languages. But for simplicity, we will use

Arduino boards (e.g., UNO and Mega2560) for building the infrastructure layer (IoT

layer).

6.5.2 ETHERNET SHIELD

Monitoring components connected on Arduinos could be done in two methods.

The first method is using Serial Peripheral Interface (SPI) and thread functions on

base-stations (gateways), whereby sensors measure their values and Arduinos send

devices’ readings to base-stations, which in turn store the readings after analyzing

the messages in the database. In this case, Arduino acts as a client to push device
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readings to base-stations [4]. The second method is to retrieve information from Ar-

duinos directly using RESTful services. In this case Arduino acts as a web server [4],

which provides RESTful services to control devices and pull device readings. Both

methods require web applications (to host device pages) for monitoring states of de-

vices connected on Arduinos and for retrieving information directly (i.e., real-time

information) or indirectly from a database (i.e., stored information) using special em-

bedded code (e.g., AJAX) in some parts of the web pages. As a result, the IoT is

considered as a combination of push and pull methods for more and ever-increasing

connectivity with any physical object or environmental events happening in the im-

mediate and wider environment [36]. In order to make Arduino act as a web server,

an Ethernet Shield [35] is installed on top of the Arduino board such as shown in

Fig. 6.1(c).

6.5.3 XBEE PRO-SERIES2 HARDWARE

XBee [35,37], shown in Fig. 6.1(a), is a special type of small, cost-effective ra-

dios that enable microcontrollers (e.g., Arduinos) to communicate wirelessly with

low power and low bandwidth. It is used with the Arduino Wireless Shield. XBee,

Bluetooth, and Wi-Fi are used for allowing wireless communication between micro-

controllers (gateways) in the WSN. XBee shield is a special type that is used for

connecting XBee on Arduinos, as shown in Fig. 6.1(b).

As mentioned previously, the IoT is a global network of computers and sensors

that communicate together through the internet using high-level (IP) or low-level

(6LowPAN) protocols. So, we need to connect microcontrollers to each other forming

a WSN according to a selected network topology. The XBee modules with ZigBee

firmware (ZB firmware) [38] are designed to form networks with star, cluster, tree,

or mesh topologies, whereby there is a hierarchy of devices and one coordinator is

always necessary. For establishing wireless communication between Arduinos, radios

should have the same type of firmware (e.g., ZigBee). Fig. 6.2 shows an example of

communication between two Arduinos using XBee modules.

XBee uses ZigBee, 802.15.4, and DigiMesh protocols. Building a WSN using

the ZigBee protocol is slower than 802.15.4 but allows for building well-structured

network with nondeterministic throughput and sleeping endpoints based on a coordi-

nator (base-station) and routers between the endpoints. The WSN that is built using

ZigBee modules has three types of devices: (1) coordinator, (2) router, and (3) end-

point or end device. If the network topology is star, then the WSN contains two types

only, coordinator and endpoint. The number of nodes per master node in the network

may be 65,000 nodes with communication ranges from 70 meter to 300 meter (1.6

km possible).

6.5.4 X-CTU SOFTWARE (XBEE API PROTOCOL)

To configure XBee (ZigBee module) [34] as a coordinator, router, or an endpoint, we

need to change the firmware files found on Digi’s RF products using Digi’s configura-

tion software (X-CTU) [34,35]. X-CTU application is a Windows-based application.
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It has multiple functions; each window tab in the application has a different func-

tion. For example, we can select Range Test tab for testing signal range between two

Arduinos attached to XBee modules.

The ZigBee protocol allows setting up a radio link between the endpoints for cov-

ering a wide area by sending messages through multiple routers between endpoints.

For enabling simple communication between two nodes (Arduinos with XBee mod-

ules), one of them should be configured with the coordinator firmware, and the other

with router or endpoint firmware.

6.6 EXPERIMENTS FOR THE WOT
This section presents concrete steps for building a WoT testbed in the form of ex-

periments that show how to build WoT-based smart home applications using Zigbee

modules [38,39]. They are combined to eventually represent the main components

of the WoT testbed. All experiments code can be downloaded [40]. The IoT layer

consists of the physical network between SThs (Arduinos and sensors) and the IoT

platform (also called IoT cloud) that provides services for charting sensory data in

real-time using existing protocols (e.g., Xively [31] and Thingspeak [32]). The WoT

enhances the IoT platform by building web applications that visualize IoT data and

provide more services such as searching for SThs and EoIs [1,12]. In this section, we

present experiments following the WoT architecture starting from converting things

to SThs till visualizing SThs’ data and EoIs’ states, then these experiments are com-

bined together forming a mini-project of a testbed for the WoT.

6.6.1 EXPERIMENT 01: CONVERTING THINGS TO STHS

Converting things to SThs is done by attaching sensors and actuators to things [7,8],

so that SThs represent states of physical things online through the WoT. Integration

of SThs is direct if they support IP connection and indirect if they speak other low-

level protocols [41]. Converting things to SThs is the key element of the IoT [2,12,

42]. For example, converting a door to a smart door by adding a touch screen and a

certain actuator allows locking and unlocking from anywhere. Representing power

consumption of a building clarifies the difference between two concepts, STh and

EoI. Representing power consumption could be done by converting devices to SThs

through attaching special types of sensors (e.g., INA219 sensor). The building here

is called an EoI, while devices attached with sensors are called SThs. The experi-

ment for this example is simplified by using RGB-LEDs and Arduino whereby the

RGB-LED becomes red when power consumption is higher than the average rate

(calculated from historical data), becomes green when power consumption is in the

average range, and becomes blue when power consumption is less than the average

rate.

The first experiment, shown in Fig. 6.3, represents temperature state of a room

using light level (brightness or diming level) of a LED located in that room. The
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FIGURE 6.3

Experiment 01: Converting things and places to SThs and EoIs.

higher the dimming of the LED, the lower the room temperature, and vice versa. The

RGB-LED is used as well, for representing the room state as a discrete set of states

(hot, warm, and cold), where RGB-LED becomes red to represent hot state, green to

represent warm state, and blue to represent cold state. A code segment of controlling

the RGB-LED is shown in Fig. 6.3, where getavg is a function for calculating the

average rate from sensor’s historical readings, 50th percentile could be implemented

by this function for getting more accurate results.

6.6.2 EXPERIMENT 02: INTEGRATING STHS AND EOIS IN THE IOT

Integrating SThs and EoIs in the IoT is done in two steps. The first step is to create

profiles for newly joined SThs assigning them to EoIs. The second step is to monitor

and control SThs through the Internet, forming bases of the IoT layer [4]. Creating

profiles in this chapter is done manually using a configuration application (described

in [1,43]), but it can be done automatically by discovering similar SThs in the IoT

and selecting the most similar one, fetching its profile contents using semantics [44]

and global ontologies as proposed in [45]. They propose a service-oriented middle-

ware that abstracts things as services. Sensor similarity search could be used for this

purpose [25] and the WoTSF search framework [12] enhances this process by using

two-level indices; this automation is out of this chapter’s scope and is planned as

future work.

SThs’ profiles are registered in a database, so that their static information could

be retrieved. Registration is performed using a network setup application (as in [1]).
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FIGURE 6.4

Experiment 02: Arduino acts as a web server supporting monitoring and controlling services
for the IoT layer.

This application controls SThs and monitors EoIs locally (i.e., control is done using

base-station connected to PC using SPI), and uses logical path in a smart home as an

attribute for the STh [1].

The second step is monitoring SThs and EoIs in the IoT (e.g., monitoring indoor

temperature) and controlling them online. This step is done (1) directly, when the

Arduino gateway acts as a web server hosting its page on the attached SD-card or

embedding HTML code in the response message (experiment is shown in Fig. 6.4),

and (2) indirectly, by calling web services hosted on a base-station connected to the

Arduino gateways, whereby the Arduinos receive commands and send raw sensory

data to base-stations, which in this case are similar to the Dataset Collector applica-

tion (DsC) in [1,2,46] (more details in the next sections). SThs pages are built so that

they can be refreshed (i.e., reloading whole page contents) in less than a minute for

monitoring SThs’ states in real-time. Also, pages are coded using AJAX, so that only

some parts are reloaded (partial refresh) instead of refreshing the whole page. The

integrated WoT testbed in [46] codes SThs pages using AJAX.

Components in Fig. 6.3 are updated to be such as shown in Fig. 6.4, where the

Ethernet shield is installed on top of the Arduino board, so that components could be

monitored and controlled through the Internet, forming the IoT layer. Arduino code

is also updated so that Arduino can act as a web server for monitoring room temper-

ature using LM35 connected on pin A0, and for controlling LED connected on pin 8.

GET RESTful API is implemented on the Arduino that is attached with Ethernet

component and has an IP address (e.g., 192.168.1.177) by embedding HTML code in

the reply message. Arduino checks if there is an available client and acts according
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FIGURE 6.5

Experiment 03: Generating Sensory Data from the IoT. (a) Base-station architecture; (b)
Dataset Collector Application (DsC) for the IoT.

to client action written in the received message, as indicated in the code segment in

Fig. 6.4 for controlling the LED. Arduino’s web page is refreshed or reloaded every

5 seconds.

The most appropriate method for designing a web page for visualizing STh’s

data despite resource constraints (allowing monitoring and controlling its state in

real-time) is to implement and use APIs (RESTful services). APIs act as a middle

layer between physical gateways (Arduinos) and virtual gateways (web pages). This

method is preferable for building WoT applications, where it can host static and dy-

namic information in the same page (e.g., WoT testbed in [46]).

To sum up, the concrete steps to build a WoT are so far as follows.

1. Building the physical layer for measuring the environmental events (using sen-

sors) and for controlling the surrounding environment (using actuators).

2. Building web pages for SThs.

3. Building APIs for sending and receiving commands between the Arduinos and

their web pages. These APIs are RESTful services [15,47].

6.6.3 EXPERIMENT 03: GENERATING SENSORY DATA FROM THE IOT

The following experiment discusses how to build a base-station that contacts Ar-

duinos in the IoT for sending commands and receiving information. The base-station

runs DsC application to collect sensory data about a set of environmental events in

real-time. It sends a set of configurations or commands to Arduinos in the IoT net-

work. The base-station monitors and controls the SThs in addition to collecting the
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FIGURE 6.6

RESTful API: (a) Arduino code for handling incoming commands; (b) RESTful API GET for
getting SThs’ states.

datasets. The execution of this experiment starts by establishing a connection between

the base-station and gateways (Arduinos), whereby the gateways are configured to

implement a certain topology (e.g., mesh or star). Base-station is implemented by at-

taching a microcontroller (that acts as a XBee coordinator) to a PC via SPI cable, as

shown in Fig. 6.5(a). The coordinator device connects to IoT gateways using a certain

connection protocol (e.g., Wi-fi or Zigbee). The DsC runs on a PC and connects to

the coordinator device via serial port connection to send and receive commands and

messages.

In this experiment, the collected sensory data are about the status of the fan, and

there is a dependency between the fan and temperature value (Fig. 6.5(b)). The code

behind the buttons of the DsC are calls for SThs’ RESTful APIs. Fig. 6.6(b) shows

RESTful service GET that monitors STh’s state, where it takes STh’s id as an input

parameter. In this experiment, because the DsC connects directly to Arduino, it calls

serial port function writeline to send a command message (e.g., serialPort.Write-

Line(“set_on,6,20”)). On the other hand, the Arduino receives the message and

executes commands, such as shown in Fig. 6.6(a). In this example, set_on is a com-

mand for turning on the device that is connected on pin 6 (the fan) with degree 20

(i.e., light or speed value is 20). Maximum digital value in Arduino is 255.

Sensory data are generated in the form of dataset in order to represent device states

in real-time online and offline using a web application [1]. Arduino acts as a coordi-

nator for sending and receiving messages or commands in the network, and acts as a

gateway in the same time to report states of SThs connected on it (Fig. 6.5(a)). For a

larger IoT network, the coordinator contacts the main gateways, which are configured



194 CHAPTER 6 A WOT TESTBED

FIGURE 6.7

Experiment 04: Configuring ZigBee modules: (a) Coordinator profile and (b) Router profile.

as routers in a mesh topology, or end-devices in a star topology. Configuring the IoT

network to implement a certain network topology is discussed in details in the next

section.

6.6.4 EXPERIMENT 04: CONFIGURING IOT NODES USING X-CTU
SOFTWARE

As mentioned previously, for building a WSN using XBee modules (i.e., using Zig-

Bee firmware) [35,38], one node in the WSN should be configured as a coordinator

to manage all endpoints in the WSN [39].

• Configuring coordinator device using X-CTU. As shown in Fig. 6.7(a), the

device is configured as a coordinator by changing the function set to ZIGBEE CO-

ORDINATOR AT, setting PAN ID to 1111. XBee-Shield button XBEE/USB should

be set on USB selection during code burning and on XBEE otherwise (e.g., sending

and receiving signals). Coordinator and endpoints should have the same PAN ID

(default gateway in IPv4), so that all nodes send their messages directly to the co-

ordinator or indirectly though routers (i.e., nodes that share the same PAN ID can

communicate with each other [34,35]). PAN ID, high word (SH), and low word

(SL) are important items in node configuration. For sending requests from the co-
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ordinator to all nodes in the network, nodes should have the same PAN ID in their

configuration and Destination Address High (DH) is set to zero in the coordinator.

But for building a peer-to-peer communication, DH in the coordinator is set to the

value of SH in the endpoint device.

• Configuring router device using X-CTU. In order to enable end-point devices

to send their information directly to the PC (coordinator) implementing a star

topology using ZigBee modules, the XBee module attached to the PC through the

USB-shield should be configured as a coordinator (Fig. 6.7(a)), and end-point de-

vices should be configured as routers or end-point devices, as shown in Fig. 6.7(b).

This figure shows configuration of Arduino-Uno, where attributes surrounded with

red rectangles in this figure are kept similar in all end-point devices or router de-

vices, while attributes surrounded with light-blue rectangles are set to different

values in all end-point devices.

• Configuring end-point device using X-CTU. For enlarging the network (i.e.,

implementing a different network topology, such as mesh topology), all the re-

maining nodes should be configured as endpoint devices, changing the function set

in Fig. 6.7(b) from ZIGBEE ROUTER AT to ZIGBEE END DEVICE AT. More

details about types of configuration are in [34,35,38,48].

6.7 PROJECT: BUILDING A TESTBED FOR THE WOT
Experiments in the previous section implement main services for the WoT. These ser-

vices are combined together to build a testbed for the WoT following the architecture

in [1] and [2]. Main elements of this architecture are as follows.

1. IoT infrastructure, implementing appropriate network topology (e.g., star topol-

ogy).

2. Network setup or configuration application: Instead of creating SThs’ profiles

manually, joined SThs should be discovered dynamically enabling auto genera-

tion for their profiles by searching for similar SThs [12,25]. SThs and gateways

should speak the same protocol (command messages).

3. WoTweb application and APIs: for representing, monitoring and controlling SThs

and EoIs. Searching for SThs and EoIs in real-time (dynamic information) using

simple query language is the key service in the IoT and the WoT [12].

4. Dataset collector application (DsC): for collecting sensory data in the form of

datasets that could be used offline for simulating the WoT. Running the WoT

testbed offline using datasets generated from physical environments enhances test

results [1] as compared to simulators like Cooja [3].

6.7.1 THE IOT INFRASTRUCTURE

The project presented in this section implements a smart home application for the

building architecture shown in Fig. 6.8(a). Component description of the building

architecture is shown in Fig. 6.8(b). This project uses simple components indicated
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FIGURE 6.8

Smart building structure with sensors and actuators used in the project.

FIGURE 6.9

The IoT network of the project consists of one coordinator and two router devices (router
device acts as an end-point device when the IoT implements the star topology).

in Table 6.1. For simplicity, the building has two rooms; each room has a temperature

sensor, photocell and LED. Each room is represented by a physical gateway (Arduino

microcontroller) and a virtual gateway (web page).

As shown in Fig. 6.9, the IoT network of the project implements a star topol-

ogy to save the power consumed in message transmission (star topology configures



6.7 PROJECT: BUILDING A TESTBED FOR THE WOT 197

FIGURE 6.10

Measured RSSI values: (a) Arduino Mega2560 and (b) Arduino UNO.

nodes using less number of hops between coordinator and endpoint devices). In this

project, the network connects two Arduinos with the coordinator wirelessly using

XBee modules and Zigbee connection tools and protocols. The IoT layer consists of

three nodes. The first node is of type Arduino-UNO; the second of type Arduino-

Mega2560, and the third is a PC. USB-shield connects XBee module to the PC. The

PC receives incoming messages wirelessly using Zigbee from Arduino-UNO and

Arduino-Mega2560 then stores them in a database. As mentioned above, to imple-

ment such a WSN, Arduino-UNO and Ardunio-Mega2560 are configured as routers

or end-point devices, and the PC is configured as a coordinator (base-station).

Device firmware configurations of this project are available for download [49].

Arduinos are distributed after testing Received Signal Strength Indicator (RSSI) [50,

51]. RSSI was measured in decibels using Digi’s X-CTU software to determine signal

noise, and its value ranges from 0 to 120; the closer it is to zero, the stronger is the

signal. RSSI for Arduinos is shown in Fig. 6.10.

6.7.2 NETWORK PROTOCOLS

Internal protocols are written for managing SThs work in the IoT network (e.g., send-

ing and receiving messages). The coordinator, routers, and end-point devices speak

the same language (command messages). These commands are sent by the coordina-

tor using DsC as in [1,2]. The list of the common messages is shown in Table 6.2.

In the project, Arduinos represent EoIs (rooms) and act as physical gateways;

each Arduino is attached with two sensors (LM35 and LDR) and two actuators (LED

and RGB-LED) in addition to XBee module that is connected to Arduino using XBee

shield component as shown in Fig. 6.1. The Arduino circuit and a snippet of its code

is shown in Fig. 6.11. This code is for the loop() function of the Arduino code. The

loop() function is organized into three parts. In the first part (part 01 in Fig. 6.11), Ar-

duino listens to all available requests (e.g., GET) coming from clients on the Internet
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Table 6.2 List of protocol commands between Arduinos and DsC

Protocol command Description

#Who For discovering all connected gateways in the network,

whereby they reply with a message containing their

ID_Name_Type.

#Open, #Close To turn on/off a session between DsC and gateways

#Led Check all Connected Leds on Arduinos and send back

feeds about their states

#All Feedback about all connected devices on selected

Arduinos

#Temp_on, #Temp_off Turn on/off dependencies between temperature sensors

and other devices

#LDR_on, #LDR_off Turn on/off dependencies between Photocell sensors and

other devices

#Feed_Temp_on, #Feed_Temp_off Turn on/off feeds from temperature sensors.

#Feed_LDR_on, #Feed_LDR_off Turn on/off light sensor (photo cell) feeds.

#Feed_Changes_Only_on To set Arduino on change mode where it feeds

information only whenever a change occurs in its objects

(push method).

#Feed_Changes_Only_off Do not feed information when a certain change occurs

(poll method).

#Time = 1000 Time interval to feed their information back to DsC.

#Quick, #Normal To initiate mode in which Arduinos send and receive

signals

#Conditions_on = #Temp_on + #LDR_on (to fire all dependencies between devices).

and serves them by sending back its HTML page containing SThs readings. In the

second part (part 02 in Fig. 6.11), Arduino receives and handles incoming messages

(commands) from the DsC. In the third part (part 03 in Fig. 6.11), Arduino prepares

all SThs readings following the configurations that are received from the DsC. In the

case of the command message All_Network, Arduino sends all current SThs’ read-

ings, while in the case of ChangesOnly, Arduino sends all currently changed readings

of the SThs).

6.7.3 WEB APPLICATION AND WEB SERVICES

The WoT is considered the application layer, which visualizes the IoT data using

HTTP protocol and standard RESTful services. Thus, addingWoT layer to the testbed

is done in two steps: (1) building the web application and (2) building SThs APIs

(web services). The web application of the WoT is built using ASP.net, where each

EoI (e.g., room) is represented by a web page which may contain more than one STh’s

link. Each STh is represented as a web page containing dynamic parts for visualizing

its state in real-time (using charts). More details with code segments are in [1,2,46].

A set of web services were written in C#. The web application loads the available



6.7 PROJECT: BUILDING A TESTBED FOR THE WOT 199

FIGURE 6.11

Arduino circuit and code snippet of its loop function: Arduino circuit represents room_1 in
the building architecture.

SThs APIs dynamically. A special tag GET# is added as an additional service that is

executed by default for the device webpage.

Because it is difficult for traditional web search engines to crawl and index pages

containing dynamic information [12,16] (e.g., when pages are coded in AJAX),

Google optimization rules [52] will be considered for directing spiders to index de-

fault URLs instead of parts coded in AJAX, like the WoTSF in [12]. In this project,

the GET# service is called instead of the dynamic part. WoTSF [12] locates a server-

root-file for each WoT following Google optimization rules [52] to build high-level

indices, saving time in crawling and indexing dynamic pages of the WoT. Building

special crawlers for WoT pages is another solution, where spiders can execute dy-

namic parts on the fly and index results (e.g., AJAX crawler [53]).

The main services of the web application are monitoring sensors, controlling ac-

tuators, triggering action events, and periodic sensor reporting [29]. The device page

loads the RESTful services dynamically using Web Services Description Language

(WSDL) [54] according to the Arduino IP and selected device ID. The web appli-

cation operates in two modes: offline and online [1,2]. In offline mode, it attaches a

dataset generated by the DsC (details in the next section) and simulates environmen-

tal events using historical information of real SThs, while in online mode, the web

application retrieves SThs information directly from the IoT (Arduinos) in real-time.
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FIGURE 6.12

The architecture of the Dataset Collector Application (DsC).

6.7.4 DATASET COLLECTOR APPLICATION (DSC)

The coordinator (PC attached with XBee modules through a USB-shield) of the WoT

testbed acts as a gateway by running the DsC [1,2] application for discovering and

controlling SThs in the IoT. DsC generates datasets from discovered gateways by

commanding the IoT using different rules, as shown in Fig. 6.12. Gateways pe-

riodically check SThs states and send back SThs information to be stored in the

base-station; the period length for checking SThs states is controlled by the DsC in

the beginning, whereby the DsC sends #Time commands to all of them (e.g., #Time

= 1000) [46]. DsC can store SThs information written in different formats (e.g., Mi-

croformat). The main parts of the DsC are as follows.

1. Discovery part: in this part the DsC discovers all known gateways in the IoT net-

work by sending #Who command (Table 6.2). It can get a list of the registered

gateways from the database, where the network configuration application stores

such information about the network.

2. Rule selection part: using this part, users of the WoT testbed instruct gateways

about certain types of information and methods (All_Network or ChangesOnly)

according to which gateways send SThs feeds. On the other hand, gateways update

their settings in order to send back the required information.

3. Message analyzer part: this part handles and analyzes incoming feeds and stores

information written in pre-selected format.

4. Monitoring part: it monitors the contents of the received messages, calculates the

time delay of each processed message, and assesses dataset time accuracy of the

generated dataset.
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The DsC generates two types of information [1]: files that contain static informa-

tion about building architecture and SThs profiles (i.e., static attributes of the STh)

and dynamic information about SThs values and EoIs states. The network configu-

ration application stores static information about the IoT layer (SThs profiles) in a

database. DsC retrieves this type of information by implementing search queries on

the database. Dynamic information is stored by IoT base-stations; this type of in-

formation is retrieved from the historical data or generated directly in real-time by

requesting discovered gateways and instructing them to send their feeds following a

certain dataset generation rule.

6.8 SUMMARY
In this chapter we presented the main practical knowledge and skills for building

WoT applications and WoT testbeds based on a smart home application. Traditional

things or daily-life objects and places are converted at first to SThs and EoIs by

attaching sensors and actuators to things and attaching or locating more than one

STh to represent states of the EoIs.

Building the WoT layer on top of the IoT layer needs to use current web tools and

services to visualize SThs values and EoIs states. The IoT layer can have different

types of nodes: coordinator, router, and end-device. Zigbee Network configuration

is done using X-CTU software. For covering a wide area, building a WSN needs

at least one node that acts as a coordinator and the other nodes to act as routers

and end-point devices. Concrete steps for building the WoT testbed are discussed in

the form of experiments and a mini-project. The experiments implement main WoT

services, such as integrating SThs and visualizing their states.

The main parts of the WoT testbed project are as follows.

1. Building the IoT layer:

• Converting things to SThs and connecting them to gateways (the IoT nodes).

• Naming SThs: creating profiles for SThs and EoIs using network configura-

tion application or automatically using semantic technology and SThs similarity

search tools (only manual naming is presented in the chapter) [12,25].

• Using or creating a common protocol between gateways and SThs.

• Configuring gateways (coordinator, router, or end-device) to implement an ap-

propriate topology (e.g., star or mesh).

2. Building the WoT application layer:

• Building web services (connections between physical and virtual gateways).

• Building virtual gateways (web pages) in a hierarchical structure following

building or environment structure. These web pages call RESTful APIs to mon-

itor and control SThs and EoIs.
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• Discovering all available gateways, getting a list of connected devices on each

gateway.

• Sending command messages (rules) to instruct the gateways to send back spe-

cific information about a specific list of devices according to a specific action or

event.

• Listening to router devices following a dataset generation rule (All_Network or

ChangesOnly), and analyzing incoming messages to extract SThs values.

• Storing incoming feeds (SThs states) written in the selected format (e.g., micro-

format).
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